MSA(Measurement System Analysis)

Measurement System Analysis: Hidden Factory Evaluation 

What Comprises the Hidden Factory in a Process/Production Area?

  • Reprocessed and Scrap materials — First time out of spec, not reworkable
  • Over-processed materials — Run higher than target with higher
    than needed utilities or reagents
  • Over-analyzed materials — High Capability, but multiple in-process
    samples are run, improper SPC leading to over-control 

What Comprises the Hidden Factory in a Laboratory Setting?

  • Incapable Measurement Systems — purchased, but are unusable
    due to high repeatability variation and poor discrimination
  • Repetitive Analysis — Test that runs with repeats to improve known
    variation or to unsuccessfully deal with overwhelming sampling issues
  • Laboratory “Noise” Issues — Lab Tech to Lab Tech Variation, Shift to
    Shift Variation, Machine to Machine Variation, Lab to Lab Variation

Hidden factory Linkage –

  • Production Environments generally rely upon in-process sampling for adjustment
  • As Processes attain Six Sigma performance they begin to rely less on sampling and more upon leveraging the few influential X variables
  • The few influential X variables are determined largely through multi-vari studies and Design of Experimentation (DOE)
  • Good multi-vari and DOE results are based upon acceptable measurement analysis




Measurement System Terminology

Discrimination Smallest detectable increment between two measured values

Accuracy related terms

True value – Theoretically correct value

Bias – Difference between the average value of all measurements of a sample and the true value for that sample

Precision related terms

Repeatability – Variability inherent in the measurement system under constant conditions

Reproducibility – Variability among measurements made under different conditions (e.g. different operators, measuring devices, etc

Stability distribution of measurements that remains constant and predictable over time for both the mean and standard deviation

Linearity A measure of any change in accuracy or precision over the range of instrument capability

Measurement System Capability Index – Precision to Tolerance Ratio:

  •  P/T = [5.15* Sigma (MS)]/Tolerence
  • Addresses what percent of the tolerance is taken up by measurement error
  • Includes both repeatability and reproducibility:  Operator * Unit * Trial experiment
  • Best case: 10%  Acceptable:  30%

Note: 5.15 standard deviations accounts for 99% of Measurement System (MS) variation.  The use of 5.15 is an industry standard.

Measurement System Capability Index – %Gage R & R:

  • % R & R =[Sigma (MS)/Sigma(Observed Process Variation)]*100
  • Addresses what percent of the Observed Process Variation is taken up by measurement error
  • %R&R is the best estimate of the effect of measurement systems on the validity of process improvement studies (DOE)
  • Includes both repeatability and reproducibility
  • As a target, look for %R&R < 30%



  1. I was looking for this…thanks for posting this.

    Liked by 1 person


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: