Control Phase in Six Sigma……

What is Control Phase in Lean Six Sigma and How it differs from Pre Control?

THE SIGMA ANALYTICS

Purpose

To complete project work and hand off improved process to process owner, with procedures for maintaining the gains

Deliverables

  • Documented plan to transition improved process back to process owner, participants and sponsor
  • Before and after data on process metrics
  • Operational, training, feedback, and control documents (updated process maps and instructions, control charts and plans, training documentation, visual process controls)
  • A system for monitoring the implemented solution (Process Control Plan), along with specific metrics to be used for regular process auditing
  • Completed project documentation, including lessons learned, and recommendations for further actions or opportunities

Key steps in Control

  1. Develop supporting methods and documentation to sustain full-scale implementation.
  2. Launch implementation.
  3. Lock in performance gains. Use mistake-proofing or other measures to prevent people from performing work in old ways.
  4. Monitor implementation. Use observation, interaction, and data collection and charting; make additional improvements as appropriate.
  5. Develop Process Control Plans and hand off control…

View original post 444 more words

Net Promoter Score (NPS) Calculation and concept……

Have you ever liked a company so much that you’ve told your friends about it?

The Net Promoter Score system uses one basic question to measure customer loyalty:

“How likely is it that you would recommend our organisation to a friend or colleague?”

There are many formulae to understand customer’s opinions, such as the Customer Satisfaction Score (CSAT) system, but the NPS system is intended to go beyond testing how satisfied a customer is with a company: it’s designed to test whether someone likes a brand enough to recommend it to others.

In other words, the person isn’t merely “satisfied” with the company – by telling others about the brand, the person is effectively marketing the company’s services.

Although there are pros and cons to NPS, numerous research studies have shown that the NPS system also correlates with business growth.

Studies by the Harvard Business Review have found that companies ranging from banking to car-rental companies show higher income when they improve their Net Promoter Scores.

So, if you’re looking for a more scientific way than just relying on online reviews to understand your brand’s strength, the NPS is a straightforward system to use, and one of its big benefits is that it allows you to benchmark your company’s results against others in your industry.

The Way NPS formula works

Just as the main question of the Net Promoter Score sample survey is fairly simple, the Net Promoter Score calculation system is too. At first glance, it may seem rather complicated, but we’ll show you how to break it down and make figuring out your Net Promoter Score an easy process.

The Net Promoter Score Scale

To get started, customers are asked to rate their likelihood of recommending a company to a friend or colleague by using a 0-10 point scale:

The number on the scale that a customer chooses is then classified into one of the categories: “Detractors,” “Passives,” and “Promoters.”

Score breakdowns:

0 – 6: Detractors

7 – 8: Passives

9-10: Promoters

You can think of the NPS system as similar to a four-star system on an online review, but the NPS scale gives you a broader way (and a more accurate method) to measure customer’s opinions.

How to calculate Net Promoter Score ?

Let’s suppose you’ve sent out an online poll with the NPS question and the 0-10 scale and you’ve received 100 responses from customers. What do you do with the results? Is it as simple as averaging the responses? Well, not quite. But it’s almost that easy.

The NPS system gives you a percentage, based on the classification that respondents fall into – from Detractors to Promoters. So to calculate the percentage, follow these steps:

·  – Enter all of the survey responses into an Excel spreadsheet.

·  – Now break down the responses by Detractors, Passives and Promoters.

·  – Add up the total responses from each group.

·  – To get the percentage, take the group total and divide it by the total number of survey responses.

·  – Now subtract the percentage total of Detractors from the percentage total of Promoters – this is your NPS score.

Let’s break it down:

(Number of Promoters – Number of Detractors) / (Number of Respondents) x 100

Example: If you received 100 responses to your survey:

10 responses were in the 0-6 range (Detractors)

20 responses were in the 7-8 range (Passives)

70 responses were in the 9-10 range (Promoters)

When you calculate the percentages for each group, you get 10%, 20% and 70% respectively.

To finish off, subtract 10% (Detractors) from 70% (Promoters), which equals 60%. Since an example Net Promoter Score is always shown as just an integer and not a percentage, your NPS is simply 60. (And yes, you can have a negative NPS, as your score can range from -100 to +100.)

Once You’ve finished your Net Promoter Score Calculation. Now what?

So you’ve sent out the NPS survey sample to your customers. You’ve compiled the results and run the numbers. You now have your Net Promoter Score number – maybe it’s a 52. Is that good or bad?

Well, like many things in life, it’s really all relative. If your competitors have NPS numbers in the high 60s, you’re probably going to try to work out where your brand could improve. On the other hand, if your competitors all have scores in the low 40s, you’re doing just fine.

 

 

 

How Non-Fatal Errors contributes to decrease in Quality?

Many customer contact centers report quality performance that they believe is acceptable.  However, high performance centers have found that in order to drive real business performance — customer satisfaction improvement and reduction in costly errors — they have to rethink how they measure and report Quality.

i have consulted  three customer contact centers on this topic.  A key finding: The best centers distinguish fatal from non-fatal errors — they know that one quality score doesn’t work!

However, most centers have just one quality score for a transaction (a call, an email, etc.) and they establish a threshold that they think is appropriate.  For example, one center’s quality form has 25 elements (many are weighted differently) with a passing grade of 80%.  This approach is typical, but it doesn’t work to drive high performance.

High performance centers create a distinct score for both fatal (or critical) and non-fatal (or non-critical) errors.  This enables them to (a) focus on fixing those errors that have the most impact on the business, and (b) drive performance to very high levels.

In my previous Blog about “Transactional Quality”, i have explained about Fatal and Non-Fatal Errors

What Is A Fatal Error?

We find that there are at least six types of fatal errors, which fall into two categories.  The first category includes those things that impact the customer.  Fatal errors in this category include:

1.  Giving the customer the wrong answer.  This can be further divided into two types:

• The customer will call back or otherwise re-contact the center.  This is the “classic” fatal error.

• The customer does not know they received the wrong answer (e.g., telling the customer they are not eligible for something that they are, in fact, eligible for).

2.  Something that costs the customer unnecessary expense.  An example would be telling the customer that they need to visit a retail store when they could have handled the inquiry over the phone.

3.  Anything highly correlated with customer satisfaction.  We find that first-call resolution is the single attribute most often correlated with customer satisfaction, although attribute correlations are different for different businesses (e.g., one center found that agent professionalism was the number-two driver of customer satisfaction—unusual given that professionalism is typically a non-fatal attribute).

The second category includes the next three fatal errors — those things that affect the business:

4.  Anything illegal.  The best example of this is breach of privacy (e.g., a HIPAA violation in a healthcare contact center, or an FDCPA violation in a collections center).

5.  Something that costs the company.  A good example is typing the wrong address into the system, which then results in undelivered mail.  This is another “classic” fatal error.

6.  Lost revenue opportunity.  This is primarily for a sales or collections center.

So… What is a Non-Fatal Error?

Non-fatal errors can be considered as annoyances.  These typically include misspellings on emails and what is often referred to as “soft skills” (using the customer’s name, politeness, etc.) on the phone.

If they are annoyances, then why spend time tracking them?  Because too many non-fatal errors can create a transaction that is fatally defective.  One misspelling or one bad word choice on an email probably won’t even elicit a response from a customer, but multiple misspellings, bad word choices, bad sentence structures, etc. will cause the customer to think that the substance of the email is likely incorrect.

What’s the Right Way to Score?

In a high performance center, one fatal error will make the entire transaction defective.  There is no middle ground.  So, the score for the center at the end of the month is simple—it’s the number of transactions (e.g., calls) without a fatal error divided by the number of transactions monitored.

So, what happens in a center that changes from the traditional scoring to the more accurate “one fatal error = defect” scoring.  This center thought that their quality performance was good.  However, when they re-scored, they found that the percentage of transactions with a fatal error ranged from 2%-15%, with the average at about 10%.  This was a real shock to the executives who had been used to hearing that their quality was around 97%.

Where Did Six Sigma Come From?

As with Lean, we can trace the roots of Six Sigma to the nineteenth-century craftsman, whose challenges as an individual a long time ago mirror the challenges of organizations today. The craftsman had to minimize wasted time, actions, and materials; he also had to make every product or service to a high standard of quality the first time, each time, every time.

Quality Beginning

The roots of what would later become Six Sigma were planted in 1908, when W. S. Gosset developed statistical tests to help analyze quality data obtained at Guinness Brewery. About the same time, A. K. Erlang studied telephone traffic problems for the Copenhagen Telephone Company in an effort to increase the reliability of service in an industry known for its inherent randomness. It’s likely that Erlang was the first mathematician to apply probability theory in an industrial setting, an effort that led to modern queuing and reliability theory. With these underpinnings, Walter Shewhart worked with Western Electric (a forerunner of AT& T) in the 1930s to develop the theoretical concepts of quality control. Lean-like industrial engineering techniques did not solve quality and variation-related problems; more statistical intelligence was needed to get to their root causes. Shewhart is also known as the originator of the Plan-Do-Check-Act cycle, which is sometimes ascribed to Dr. Edwards Deming, Shewhart’s understudy. As the story goes, Deming made the connection between quality and cost. If you find a way to prevent defects, and do everything right the first time, you won’t have any need to perform rework. Therefore, as quality goes up, the cost of doing business goes down. Deming’s words were echoed in the late 1970s by a guy named Philip Crosby, who popularized the notion that “quality is free.”

Quality Crazy

War and devastation bring us to Japan, where Deming did most of his initial quality proselytizing with another American, Dr. Joseph Juran. Both helped Japan rebuild its economy after World War II, consulting with numerous Japanese companies in the development of statistical quality control techniques, which later spread into the system known as Total Quality Control (TQC).

As the global economy grew, organizations grew in size and complexity. Many administrative, management, and enabling functions grew around the core function of a company to make this or that product. The thinking of efficiency and quality, therefore, began to spread from the manufacturing function to virtually all functions— procurement, billing, customer service, shipping, and so on. Quality is not just one person’s or one department’s job. Rather, quality is everyone’s job! This is when quality circles and suggestion programs abounded in Japanese companies: no mind should be wasted, and everyone’s ideas are necessary. Furthermore, everyone should continuously engage in finding better ways to create value and improve performance. By necessity, quality became everyone’s job, not just the job of a few … especially in Japan, at a time when there was precious little money to invest in new equipment and technology.

The rest of the story might be familiar if you’re old enough to remember. By the late 1970s, America had lost its quality edge in cars, TVs, and other electronics— and they were suffering significant market share losses. Japanese plants were far more productive and superior to American plants, according to a 1980 NBC television program, If Japan Can Why Can’t We? In response to all this, American companies took up the quality cause. They made Deming and Juran heroes, and institutionalized the Japanese-flavored TQC into its American counterpart, Total Quality Management (TQM). They developed a special government award, the Baldrige Award, to give companies that best embodied the ideal practice of TQM. They organized all the many elements and tools of quality improvement into a teachable, learnable, and doable system— and a booming field of quality professionals was born.

Quality Business

The co-founder of Six Sigma, Dr. Mikel Harry, has often said that Six Sigma shifts the focus from the business of quality to the quality of business. What he means is that for many years the practices of quality improvement floated loosely around a company, driven by the quality department. And as much as the experts said that quality improvement has to be driven and supported by top executives, it generally wasn’t. Enter Jack Welch, the iconic CEO who led General Electric through 2 decades of incredible growth and consistent returns for shareholders. In the late 1980s, Welch had a discussion with former AlliedSignal CEO Larry Bossidy, who said that Six Sigma could transform not only a process or product, but a company. In other words, GE could use Six Sigma as AlliedSignal was already doing: to improve the financial health and viability of the corporation through real and lasting operational improvements. Welch took note and hired Mikel Harry to train hundreds of his managers and specialists to become Six Sigma Black Belts, Master Black Belts, and Champions. Welch installed a deployment infrastructure so he could fan the Six Sigma methodology out as widely as possible across GE’s many departments and functions. In short, Welch elevated the idea and practice of quality from the engineering hallways of the corporation into the boardroom. Lest we not be clear, the first practical application of Six Sigma on a pervasive basis occurred at Motorola, where Dr. Harry and the co-inventor of Six Sigma, Bill Smith, worked as engineers. Bob Galvin, then CEO of Motorola, paved the way for Bossidy and Welch in that he proved how powerful Six Sigma was in solving difficult performance problems. He also used Six Sigma at Motorola to achieve unprecedented quality levels for key products. One such product was the Motorola Bandit pager, which failed so rarely that Motorola simply replaced rather than repaired them when they did fail.

Control Phase in Six Sigma……

Purpose

To complete project work and hand off improved process to process owner, with procedures for maintaining the gains

Deliverables

  • Documented plan to transition improved process back to process owner, participants and sponsor
  • Before and after data on process metrics
  • Operational, training, feedback, and control documents (updated process maps and instructions, control charts and plans, training documentation, visual process controls)
  • A system for monitoring the implemented solution (Process Control Plan), along with specific metrics to be used for regular process auditing
  • Completed project documentation, including lessons learned, and recommendations for further actions or opportunities

Key steps in Control

  1. Develop supporting methods and documentation to sustain full-scale implementation.
  2. Launch implementation.
  3. Lock in performance gains. Use mistake-proofing or other measures to prevent people from performing work in old ways.
  4. Monitor implementation. Use observation, interaction, and data collection and charting; make additional improvements as appropriate.
  5. Develop Process Control Plans and hand off control to process owner.
  6. Audit the results. Confirm measures of improvements and assign dollar figures where appropriate. Give audit plan to company’s auditing group.
  7. Finalize project:
    • Document ideas about where your company could apply the methods and lessons learned from this project
    • Hold the Control Gate Review
    • Communicate project methods and results to others in the organization
    • Celebrate project completion
  8. Validate performance and financial results several months after project completion.

Gate review checklist for Control

  1. Full-scale Implementation results
    • Data charts and other before/after documentation showing that the realized gains are in line with the project charter
    • Process Control Plan
  2. Documentation and measures prepared for sustainability
    • Essential documentation of the improved process, including key procedures and process maps
    • Procedures to be used to monitor process performance and continued effectiveness of the solution
    • Control charts, capability analysis, and other data displays showing current performance and verifying gains
    • Documentation of procedures (mistake-proofing, automated process controls) used to lock in gains
  3. Evidence of buy-in, sharing and celebrating
    • Testimonials or documentation showing that:
      • The appropriate people have evaluated and signed off on the changes
      • The process owner has taken over responsibility for managing continuing operations
      • The project work has been shared with the work area and company at large (using a project database, bulletin boards, etc.)
    • Summary of lessons learned throughout the project
    • List of issues/opportunities that were not addressed in this project (to be considered as candidates for future projects)
    • Identification of opportunities to use the methods from this project in other projects
    • Plans for celebrating the hard work and successful efforts

Tips for Control Phase

  • Set up a realistic transition plan that will occur over a series of meetings, training events, and progress checks scheduled between the team and the process participants (avoid blind hand-offs of implementation plans).
  • Schedule a validation check 6 to 12 months after the control gate review. Be sure the project sponsor and local controller/finance representative is present to validate that the results are in place and stable!
  • Never anticipate perfection! Something always goes wrong. Develop a rapid response plan to address unanticipated failures via FMEA (p. 270). Identify who will be part of the “rapid response team” when a problem arises. Get permission from sponsor to use personnel should the need arise.
  • Develop tools that are easy for process participants to reference and use. It’s hard to keep paying attention to how a process operates, so you need to make it as easy as possible for people to monitor the work automatically.
  • Work out the kinds before transferring responsibility for managing the new process. Handing off (to the sponsor or process owner) a process that is still being worked on will compromise success.