MSA(Measurement System Analysis)

Measurement System Analysis: Hidden Factory Evaluation 

What Comprises the Hidden Factory in a Process/Production Area?

  • Reprocessed and Scrap materials — First time out of spec, not reworkable
  • Over-processed materials — Run higher than target with higher
    than needed utilities or reagents
  • Over-analyzed materials — High Capability, but multiple in-process
    samples are run, improper SPC leading to over-control

What Comprises the Hidden Factory in a Laboratory Setting?

  • Incapable Measurement Systems — purchased, but are unusable
    due to high repeatability variation and poor discrimination
  • Repetitive Analysis — Test that runs with repeats to improve known
    variation or to unsuccessfully deal with overwhelming sampling issues
  • Laboratory “Noise” Issues — Lab Tech to Lab Tech Variation, Shift to
    Shift Variation, Machine to Machine Variation, Lab to Lab Variation

Hidden factory Linkage –

  • Production Environments generally rely upon in-process sampling for adjustment
  • As Processes attain Six Sigma performance they begin to rely less on sampling and more upon leveraging the few influential X variables
  • The few influential X variables are determined largely through multi-vari studies and Design of Experimentation (DOE)
  • Good multi-vari and DOE results are based upon acceptable measurement analysis




Measurement System Terminology

Discrimination Smallest detectable increment between two measured values

Accuracy related terms

True value – Theoretically correct value

Bias – Difference between the average value of all measurements of a sample and the true value for that sample

Precision related terms

Repeatability – Variability inherent in the measurement system under constant conditions

Reproducibility – Variability among measurements made under different conditions (e.g. different operators, measuring devices, etc

Stability distribution of measurements that remains constant and predictable over time for both the mean and standard deviation

Linearity A measure of any change in accuracy or precision over the range of instrument capability

Measurement System Capability Index – Precision to Tolerance Ratio:

  •  P/T = [5.15* Sigma (MS)]/Tolerence
  • Addresses what percent of the tolerance is taken up by measurement error
  • Includes both repeatability and reproducibility:  Operator * Unit * Trial experiment
  • Best case: 10%  Acceptable:  30%

Note: 5.15 standard deviations accounts for 99% of Measurement System (MS) variation.  The use of 5.15 is an industry standard.

Measurement System Capability Index – %Gage R & R:

  • % R & R =[Sigma (MS)/Sigma(Observed Process Variation)]*100
  • Addresses what percent of the Observed Process Variation is taken up by measurement error
  • %R&R is the best estimate of the effect of measurement systems on the validity of process improvement studies (DOE)
  • Includes both repeatability and reproducibility
  • As a target, look for %R&R < 30%



Why MSA and How it is different from Calibration??????

Measurement System Analysis:

Statistical Process Control has taught us to look at and evaluate the variation in processes. More the complexity of the processes more is the potential variation. What we get at the output end is the stacked up variation that is a resultant of variation at every step.

Measurement is a process of evaluating an unknown quantity and expressing it into numbers. The Measurement Process too is subject to all the laws of variation and Statistical Process Control.

Measurement Systems Analysis is the scientific and statistical Analysis of Variation that is induced into the process of measurement.

Why MSA?  

A measurement system tells us in numerical terms, an important information about the entity that we measure. How sure can we be about the data that the measurement system delivers? Is it the real value of the measure that we obtain out of the measurement process, or is it the measurement system error that we see? Indeed, measurement systems errors can be expensive, and can cost our capability to obtain the true value of what we measure. So, we can say that we can be confident about our reading of a parameter only to the extent that our measurement system can allow.

How does MSA differ from calibration?  

It is a standard practice to periodically calibrate all gages and measuring instruments used in measurement on the shop floor.

In simple terms, Calibration is a process of matching up the measuring instrument scale against standards of known value, and correcting the difference, if any. Calibration is done under controlled environment and by specially trained personnel.